(CS440 Assignment 1

Fast Trajectory Replanning

Li1QIN LONG
XIN LIN
SATITA VITTAYAAREEKUL

October 13, 2019

Contents
Part 0 - Setup your Environments
Part 1 - Understanding the methods
Part 2 - The Effects of Ties
Part 3 - Forward vs. Backward
Part 4 - Heuristics in the Adaptive A*
Part 5 - Heuristics in the Adaptive A*

Part 6 - Memory Issues

10

12

Part 0 - Setup your Environments

In order to generate a maze/corridor-like structure with a depth-first search approach by using random
tie breaking to test all the experiments in the same 50 gridworlds of size 101x101. We estimated runtime
by calculating total expanded cells

A* Algorithm Pathfinder A* Algorithm Pathfinder
R R
3 : 3
.
(a) From start (b) To end

Figure 1: RFA - from starting to ending /path generating/

Part 1 - Understanding the methods

a). Explain in your report why the first move of the agent for the example search problem
from Figure 8 is to the east rather than the north given that the agent does not know
initially which cells are blocked.

1 2 3 45

m O O %= >

Figure 2: ”Figure 8: Second Example Search Problem” from Assignment Description

By the given figure, A is at cell E2, which is the start point. And T assumed to be the goal point, where
the agent is at point A and does not know the blocked cell initially. By using Manhattan distance as
heuristics, we run A* method from A to T by the given knowledge that its neighbors are unblocked cells,
E1, D2, and E3. We first push A to the open list and by expanding A, we add those three unblocked
cells to the open list as well.

Thus, in order to decide which cell should the agent move to, A* method will calculate the g-value,
h-value, and f-value for cells in the open list. And it performs:

cell E1: g-value =1 h-value = 4 f-value = 5
cell D2: g-value = 1 h-value = 4 f-value = 5
cell E3: g-value =1 h-value = 2 f-value = 3

Since cell E3 has the smallest f-value, the agent will expand from point A to cell E3.

b.1). This project argues that the agent is guaranteed to reach the target if it is not
separated from it by blocked cells. Give a convincing argument that the agent in finite
gridworlds indeed either reaches the target or discovers that this is impossible in finite
time.

This project has set the rules for the gridworld to be:

1). Tt is a finite gridworld, and the gridworld is bounded by the boundries of the gridworld.

2). There is a give start point (A) and a target point (T), where A has to find a way to reach T.

3). There are randomly set blocked cells to increase the difficulty for A to reach T.

Therefore after the agent searches all the unblocked cells it can reach by following its neighbor pointers,
it either found the target T, or all the cells it has reached is not its goal state. And in this case, it would
determine this is impossible to reach the target T.

1 2 3 4 5 1 2 3 4.5

mOoOoO w>
mOoOoOw>

A A

Figure 3: Scenario 1 Figure 4: Scenario 2

In Figure 2 and 3, the green cells are the cells that the agent can start from A and reaches through its
neighbor pointers. And cells in color red means the cells are not reachable starting from point A. So in
Scenario 1, the unblocked regions that the agent can reach does not contain point T, and thus, after the
agent went through all the cells in the green area, it will discover that it is impossible to reach the target
and terminate the program. And as of Scenario 2, the agent could go through the path:

E2— > D2—>(C2->C3—>C4—>C5—>D5—>T
and find the goal and return the path as the final result.

b.2). Prove that the number of moves of the agent until it reaches the target or discovers
that this is impossible is bounded from above by the number of unblocked cells squared.

In short, we need to prove: number of moves < (numberofunblockedcells)?

The Repeated Forward/Backward Algorithm is set to execute the A* algorithm for every decision the
agent has to make. For each A* algorithm, it is aim to find a path from its current cell to the target cell
within its current knowledge of the blocked/unblocked cells. In case of a dead-end, where the agent at
that current cell found that its surrounded by either blocked cells or visited cells or gridworld boundaries,
then algorithm will backtrack to the parent nodes on the search tree until it reaches a cell with an
unvisited neighbor, and continue to find the path by visiting that new/unvisited cell. However, in case
the algorithm backtrack all its parent and didn’t discover any unvisited cell, then the algorithm will
determine that this is impossible to reach the target point. In other words, whenever the agent moves,
it will need to implement the A* method to find a possible path. If there is indeed a path from A to
T, then the number of moves should be less then the number of unblocked cells. However, if T is not
reachable from A, then the agent will need to backtrack to parent nodes at some point when it meets a
dead-end, then the number of moves will be less than number of unblocked cells squared.

1.2 5 4 5

<2
v3
4
L5

mOOm>

6

Figure 5: Sample 5x5 Gridworld

For instance, as in Figure 4, the agent still start from point A and set its target as point T. In this case,
we assume that the agent has moves itself from A to cell A3 already and it is currently at cell A3. At
cell A3, it found that it is a dead-end, so that it needs to track-back to its parent node, which is A2, and
at cell A2 it found that the only new and invested cell is Al, so it moves to Al. Then by A* method,
the agent will move through

Al-> Bl->C(Cl->Dl1- > FEl

and found that it once again got into a dead-end. At this point, the agent found that D1 has been visited
and E2 has been visted as well. Therefore, it will determine this maze is impossible to reach from point
A to point T. More precisely, the number of unblocked cells in this case is 19, and the number of moves
is 12. And 12 < 192

Part 2 - The Effects of Ties

We implement and compare Repeated Forward A* with larger g values and smaller g values using 50
samples with 101 x 101 grids. We use the number of expanded cells as the way to see which one is
faster. We found that the algorithm with larger g values is much faster than the algorithm with smaller g
values. During implementation, we found the path of larger g value is more straight forward, while path
of smaller g value is indirect and takes more steps. The reason is that when we choose a bigger g value
step, it means that we are closer to the target. A smaller g value means it is closer to the start rather
than to the target. Expanding a smaller g value point is useless and take it back to several steps before.

Below is the number of expanded cells for two algorithms for 50 different grids as well as the line plot:

300000
250000
200000
150000
100000

50000

—— ——— —

0 S —

© D e DD DD
PSS S SR SR R G SR U A

o B
Ve
O 68 p B
A O O S O M S

A - . - S B 7 o
o S IITIFIITE -ob?} & @"3’
& D &

.,,()
PSR SR
¢ & ¢ ¢ & ¢

e arger g value first — e====smaller g value first

Figure 6: Larger g-value First VS. Smaller g-value First

Larger g Value First | Smaller g Value First

Grid0 5143 158026
Gridl 5699 221645
Grid2 5658 148686
Grid3 6372 152865
Grid4 8990 230182
Grid5 6444 118485
Grid6 5288 155648
Grid7 6739 140752
Grid8 6686 115871
Grid9 6809 169949
Grid10 5211 247493
Grid11 6297 188744
Grid12 9288 186032
Grid13 7562 164466
Grid14 5402 154367
Grid15 7128 184198
Grid16 7323 230977
Grid17 8881 211361
Grid18 7502 147156
Grid19 7082 186820
Grid20 6876 172318
Grid21 8166 235267
Grid22 9499 166070
Grid23 6675 113657
Grid24 8536 169010
Grid25 6429 96871

Grid26 6229 104243
Grid27 7450 137528
Grid28 7088 210393
Grid29 6555 158057
Grid30 7992 199927
Grid31 11043 214862
Grid32 5338 149363
Grid33 6697 159772
Grid34 7790 141272
Grid35 5363 130260
Grid36 6907 198729
Grid37 6792 123928
Grid38 7893 180669
Grid39 7591 237231
Grid40 10087 207058
Grid41 7166 143943
Grid42 5803 144217
Grid43 5581 152945
Grid44 7290 180473
Grid45 6448 146368
Grid46 6509 183968
Grid47 8782 228515
Grid48 5955 168574
Grid49 6026 160548

Table 1: 50 experiments that comparing between set larger g-value first and smaller g-value first

Part 3 - Forward vs. Backward

Implement and compare Repeated Forward A* and Repeated Backward A*
with respect to their runtime or, equivalently, number of expanded cells

We implemented 50 experiments on Repeated Forward A* and Repeated Backward A* within 50 different
101x101 gridworld and the environment is set following the instruction in Part 0.

From Table 2, we can clearly observe that the number of expanded cells on Repeated Forward A* is
much smaller than the number of expanded cells on Repeated Backward A* by roughly look through the
table. Which lead to the result that Repeated Forward A* is much faster than the Repeated Backward A*.

The reason for this is mostly because A* method relies on a heuristics function that usually states
that the closer, the smaller the f-value is, the better and thus evaluate that cell first. As for the Repeated
Backtrack A* method, it tried to generate the path from the goal the target point to the start point,
however, it does not have the knowledge of whether the cells near its ”start point” is blocked or not. And
thus, it will generate a lot of unnecessary cells where the cells might be blocked and it does not know.
Then, it decide the path based on all the cells’ f-value and choose the smallest one regardless of whether
the cell is blocked or not.

160000
140000
120000
100000

80000

60000

40000

20000

M’W—W

0

&

5
& >

°© P o oo P ® D o ©
Qv ¥ 05 %) 5 g b
TS TS

& E S ,
& & & & & & & & & $

o > o N o 13 B N
oy £ o Y X LV v P
& é\b aé\b Qé\b O & Q@@ &

%

&

e RFA, s RBA

Figure 7: RFA VS. RBA

RFA RBA
Grid0 5143 | 50939
Gridl 5699 | 42795
Grid2 5658 | 39736
Grid3 6372 | 34004
Grid4 8990 | 91321
Gridb 6444 | 60508
Grid6 5288 15891
Grid7 6739 17828
Grid8 6686 | 82452
Grid9 6809 | 56048

Grid10 || 5211 20184

Grid11 || 6297 | 28706

Grid12 || 9288 | 61593

Grid13 || 7562 | 57143

Grid14 || 5402 | 20807

Grid15 || 7128 | 31020

Grid16 || 7323 | 64135

Grid17 || 8881 69592

Grid18 || 7502 | 45397

Grid19 || 7082 | 49284

Grid20 || 6876 | 35718

Grid21 || 8166 | 77215

Grid22 || 9499 | 48827

Grid23 || 6675 | 52114

Grid24 || 8536 | 83709

Grid25 || 6429 | 39786

Grid26 || 6229 | 42208

Grid27 || 7450 | 74587

Grid28 || 7088 | 65333

Grid29 || 6555 | 40031

Grid30 || 7992 | 45109

Grid31 || 11043 | 117450

Grid32 || 5338 | 34346

Grid33 || 6697 | 40283

Grid34 || 7790 | 78079

Grid35 || 5363 | 39416

Grid36 || 6907 | 38734

Grid37 || 6792 | 63370

Grid38 || 7893 | 77051

Grid39 || 7591 | 47055

Grid40 || 10087 | 140904

Grid41 || 7166 | 68124

Grid42 || 5803 | 53552

Grid43 || 5581 | 42731

Grid44 || 7290 | 72457

Grid45 || 6448 | 70893

Grid46 || 6509 | 21386

Grid47 || 8782 | 74002

Grid48 || 5955 | 79529

Grid49 || 6026 | 39656

Table 2: 50 experiments on RFA and RBA

Part 4 - Heuristics in the Adaptive A*

The project argues that “the Manhattan distances are consistent in gridworlds in which the agent can
move only in the four main compass directions.” Prove that this is indeed the case.

Suppose we are at the state S(x, y), since we have four main directions, the cost of moving to each
direction is {[0, 1], [1, 0], [-1, 0], [0, -1]} and we can mark the next four state as S1, S2, S3, S4. The
Manhattan distance for each is:

S1—S=|z+0)z|+|(y+1)y =1
52— 8 =|(x+1)z|+|(y+0)yl =
53-8 =|(z+0)z|+]|(y—1)yl =
S4—S=x—-1)z[+[(y+0)yl =1

If Manhattan distance is not consistent, there must be a path which can be get smaller than 1. However,
we have constraints in the direction so it could not happen. Remember it is the shortest path from S to
S1, S2, S3, S4, meaning that there is no indirect path between them. And there is no diagonal ways or
shortcuts can happen to shorten the cost of path. Assume we have another state T'(a, b). The Manhattan
distance

S —T = |z—a| + |y-b)

and always consistent in gridworld.

Prove that Adaptive A* leaves initially consistent h-values consistent even if
action costs can increase:

For each compute path function in Repeated Forward A*, it computes the shortest path from current
state to the target state under current knowledge of blocking cell in a gridworld.

hnew = f(target) — g(state)

Since we are exploring the world, the number of blocking cell can only increase, which means there is no
other shorter way than the current computed path. Thus hnew is consistent.

Part 5 - Heuristics in the Adaptive A*
Implement and compare Repeated Forward A* and Adaptive A* with respect
to their runtime

From Table 3, there is no obvious difference between the runtime of Repeated Forward A* with A* and
the runtime of Repeated Forward A* with Adaptive A* but if we take a closer look and compare be-
tween each Grid, we found that Repeated Forward A* with Adaptive A* is only slightly faster than the
Repeated Forward A* with A*. (With only a few times where Repeated Forward A* with A is faster
than the Repeated Forward A* with Adaptive A*)

And the reason for most of the time RFA with Adaptive A* is faster than A* is because Adaptive
A* is more accurate since it updates the h-value of expended cells after every path generation. Moreover,
the h-value is based on the current information about the blocked cells. The actual cost from the current
state to the target is much closer to the hnew-value than Manhattan distance. It can help us better
determine the order of f-value in the open list.

Thus, this is why Repeated Forward A* with Adaptive A* is sometimes faster than Repeated Forward
A* with A*.

20
15

10

e RF A, e AclaptiveA

Figure 8: RFA vs. Adaptive A

10

RFA AdaptiveA
Grid0 || 25.96773815 | 24.32995224
Gridl || 25.81692958 | 23.87904382
Grid2 || 28.02603531 | 26.19863009
Grid3 || 22.74367356 | 22.79548192
Grid4 || 29.86446452 | 29.10989237
Grid5 || 27.78339839 | 28.14819503
Grid6 || 25.20602465 | 25.23994613
Grid7 || 32.78997374 | 30.87176323
Grid8 || 23.92296624 | 24.81746745
Grid9 || 27.27751946 | 26.71721196
Grid10 || 26.42414951 | 25.85394955
Grid11 || 32.95952177 | 31.8677752
Grid12 || 31.90341735 | 33.78737974
Grid13 || 26.59002233 | 27.46237636
Grid14 || 23.84556365 | 24.32597709
Grid1s || 34.2613399 | 33.40574002
Grid16 || 28.47283769 | 28.20689321
Grid17 || 33.48170424 | 33.40335798
Grid18 || 27.04863429 | 27.64181757
Grid19 || 33.09418225 | 32.83549595
Grid20 || 26.17461896 | 25.41119003
Grid21 || 28.1649828 | 27.63770223
Grid22 || 33.77553725 | 33.58089733
Grid23 || 27.96880102 | 27.59864998
Grid24 || 31.72165155 | 31.93809843
Grid25 || 22.19373512 | 21.86650681
Grid26 || 26.07821918 | 26.10690641
Grid27 || 30.89845324 | 30.75308728
Grid28 || 27.6109798 | 27.42579794
Grid29 || 29.04140782 | 30.3666451
Grid30 || 27.34814548 | 28.50892591
Grid31 || 37.81713986 | 37.13845992
Grid32 || 22.45202327 23.016783
Grid33 || 21.71478462 | 23.19156408
Grid34 || 28.76521015 | 27.67972827
Grid35 || 25.76935482 | 25.03672981
Grid36 || 29.83836269 | 29.07770514
Grid37 || 28.65647769 | 29.10694313
Grid38 || 30.37919903 | 31.19070816
Grid39 || 25.27616191 | 26.60934019
Grid40 || 33.35931492 | 33.40206504
Grid41 || 25.21035123 | 26.47132397
Grid42 || 25.22128057 | 24.34904742
Grid43 || 21.31319666 | 21.10589504
Grid44 || 32.2693491 | 31.36138487
Grid45 || 28.22173405 | 28.21191669
Grid46 || 25.15070868 | 25.41393661
Grid47 || 33.77624011 | 34.34416461
Grid48 || 26.78401756 | 26.67752695
Grid49 || 26.27680802 | 27.76953053

Table 3: 50 experiments on RFA and Adaptive A

11

Part 6 - Memory Issues

Suggest additional ways to reduce the memory consumption of your imple-
mentations further.

In our current implementation of the gridworld, each cell contains five int values (g-value, h-value, f-value,
x and y coordinates) and one pointer (pointer to parent). To improve the memory usage, we can get rid
of the h-value and compute the h-value at runtime. This can save us 4 bytes of memory. Moreover, we
can save x and y value into a single int, and we can extract the x and y value by using bit shift. This can
also save us 4 bytes of the memory. Additionally, we can get rid of the pointer to the parent and save
parent’s positional coordinate. This will allow us to save 4 bytes of the memory.

Calculate the amount of memory that they need to operate on gridworlds of
size 1001 1001 and the largest gridworld that they can operate on within a
memory limit of 4 MBytes

Each of our cell contains 5 int values and 1 pointer, therefore, the memory usage for each cell will be:
5* 4 + 8 = 28 Bytes. Total memory usage for grid size of 1001 * 1001 will be: 1001 * 1001 * 28 = 28.06
Mbytes.

The largest gridworld that can run with memory restriction of 4 Bytes:

(4% 1024)/28 = 146.28

Hence, the largest gridworld that can run with memory restriction of 4 Bytes will be a 12 * 12 size grid.

12

